Low Power High Performance 2.4 GHz GFSK Transceiver

Features

- 2400-2483.5 MHz ISM band operation
- Support 1 and 2 Mbps air data rate
- Programmable output power (-40dBm to 5dBm)
- Low power consumption
- Tolerate +/- 60ppm 16 MHz crystal
- Variable payload length from 1 to 32bytes
- Automatic packet processing
- 6 data pipes for 1:6 star networks
- 1.9V to 3.6V power supply
- 4-pin SPI interface with maximum 8 MHz clock rate
- Compact 20-pin 4x4 mm QFN package

Applications

- Wireless PC peripherals
- Wireless mice and keyboards
- Wireless gamepads
- Wireless audio
- VOIP and wireless headsets
- Remote controls
- Consumer electronics
- Home automation
- Toys
- Personal health and entertainment

Pin Assignments

Block Diagram

Integrated TDD RF Transceiver

FM Demodulator

Data Slicer

Power Management

FM Modulator

Gaussian shaping

Packet Processing & State Control

Rx FIFO

Tx FIFO

Register

Interface

CSN

SCK

MOSI

MISO

IRQ

CE

VSS

CDVDD

VDD

VSS

VDDPA

RFP

RFN

IRQ

VDD

VSS

XTALP

XTALN
Table of Contents

1 General Description .. 3
2 Abbreviations .. 4
3 Pin Information ... 5
4 State Control ... 6
 4.1 State Control Diagram ... 6
 4.2 Power Down Mode ... 7
 4.3 Standby-I Mode .. 7
 4.4 Standby-II Mode ... 7
 4.5 TX Mode .. 7
 4.6 RX Mode .. 8
5 Packet Processing ... 8
 5.1 Packet Format ... 8
 5.1.1 Preamble ... 9
 5.1.2 Address ... 9
 5.1.3 Packet Control .. 9
 5.1.4 Payload .. 10
 5.1.5 CRC ... 10
 5.2 Packet Handling .. 10
6 Data and Control Interface ... 11
 6.1 TX/RX FIFO ... 11
 6.2 Interrupt .. 11
 6.3 SPI Interface ... 12
 6.3.1 SPI Command .. 12
 6.3.2 SPI Timing .. 13
7 Register Map .. 15
 7.1 Register Bank 0 .. 15
 7.2 Register Bank 1 .. 20
8 Electrical Specifications ... 21
9 Typical Application Schematic .. 22
10 Package Information ... 23
11 Order Information .. 24
12 Contact Information .. 25
1 General Description

BK2421 is a GFSK transceiver operating in the world wide ISM frequency band at 2400-2483.5 MHz. Burst mode transmission and up to 2Mbps air data rate make them suitable for applications requiring ultra low power consumption. The embedded packet processing engines enable their full operation with a very simple MCU as a radio system. Auto re-transmission and auto acknowledge give reliable link without any MCU interference.

BK2421 operates in TDD mode, either as a transmitter or as a receiver.

The RF channel frequency determines the center of the channel used by BK2421. The frequency is set by the RF_CH register in register bank 0 according to the following formula: \(F_0 = 2400 + RF_CH \) (MHz). The resolution of the RF channel frequency is 1MHz.

A transmitter and a receiver must be programmed with the same RF channel frequency to be able to communicate with each other.

The output power of BK2421 is set by the RF_PWR bits in the RF_SETUP register.

Demodulation is done with embedded data slicer and bit recovery logic. The air data rate can be programmed to 1Mbps or 2Mbps by RF_DR register. A transmitter and a receiver must be programmed with the same setting.

In the following chapters, all registers are in register bank 0 except with explicit claim.

![Figure 1 BK2421 Chip Block Diagram](image-url)
2 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK</td>
<td>Acknowledgement</td>
</tr>
<tr>
<td>ARC</td>
<td>Auto Retransmission Count</td>
</tr>
<tr>
<td>ARD</td>
<td>Auto Retransmission Delay</td>
</tr>
<tr>
<td>CD</td>
<td>Carrier Detection</td>
</tr>
<tr>
<td>CE</td>
<td>Chip Enable</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>CSN</td>
<td>Chip Select Not</td>
</tr>
<tr>
<td>DPL</td>
<td>Dynamic Payload Length</td>
</tr>
<tr>
<td>FIFO</td>
<td>First-In-First-Out</td>
</tr>
<tr>
<td>GFSK</td>
<td>Gaussian Frequency Shift Keying</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>IRQ</td>
<td>Interrupt Request</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial-Scientific-Medical</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>MAX_RT</td>
<td>Maximum Retransmit</td>
</tr>
<tr>
<td>Mbps</td>
<td>Megabit per second</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller Unit</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>MISO</td>
<td>Master In Slave Out</td>
</tr>
<tr>
<td>MOSI</td>
<td>Master Out Slave In</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>PA</td>
<td>Power Amplifier</td>
</tr>
<tr>
<td>PID</td>
<td>Packet Identity Bits</td>
</tr>
<tr>
<td>PLD</td>
<td>Payload</td>
</tr>
<tr>
<td>PRX</td>
<td>Primary RX</td>
</tr>
<tr>
<td>PTX</td>
<td>Primary TX</td>
</tr>
<tr>
<td>PWD_DWN</td>
<td>Power Down</td>
</tr>
<tr>
<td>PWD_UP</td>
<td>Power Up</td>
</tr>
<tr>
<td>RF_CH</td>
<td>Radio Frequency Channel</td>
</tr>
<tr>
<td>RSSI</td>
<td>Received Signal Strength Indicator</td>
</tr>
<tr>
<td>RX</td>
<td>Receive</td>
</tr>
<tr>
<td>RX_DR</td>
<td>Receive Data Ready</td>
</tr>
<tr>
<td>SCK</td>
<td>SPI Clock</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplex</td>
</tr>
<tr>
<td>TX</td>
<td>Transmit</td>
</tr>
<tr>
<td>TX_DS</td>
<td>Transmit Data Sent</td>
</tr>
<tr>
<td>XTAL</td>
<td>Crystal</td>
</tr>
</tbody>
</table>
3 Pin Information

Figure 2 BK2421 pin assignments (top view) for the QFN20 4x4 package

<table>
<thead>
<tr>
<th>PIN</th>
<th>Name</th>
<th>Pin Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Digital Input</td>
<td>Chip Enable Activates RX or TX mode</td>
</tr>
<tr>
<td>2</td>
<td>CSN</td>
<td>Digital Input</td>
<td>SPI Chip Select, Active low</td>
</tr>
<tr>
<td>3</td>
<td>SCK</td>
<td>Digital Input</td>
<td>SPI Clock</td>
</tr>
<tr>
<td>4</td>
<td>MOSI</td>
<td>Digital Input</td>
<td>SPI Slave Data Input</td>
</tr>
<tr>
<td>5</td>
<td>MISO</td>
<td>Digital Output</td>
<td>SPI Slave Data Output with tri-state option</td>
</tr>
<tr>
<td>6</td>
<td>IRQ</td>
<td>Digital Output</td>
<td>Maskable interrupt pin, Active low</td>
</tr>
<tr>
<td>7</td>
<td>VDD</td>
<td>Power</td>
<td>Power Supply (1.9 V to 3.6 V DC)</td>
</tr>
<tr>
<td>8</td>
<td>VSS</td>
<td>Ground</td>
<td>Ground (0 V)</td>
</tr>
<tr>
<td>9</td>
<td>XTALP</td>
<td>Analog Output</td>
<td>Crystal oscillator, node P (inverter output)</td>
</tr>
<tr>
<td>10</td>
<td>XTALN</td>
<td>Analog Input</td>
<td>Crystal oscillator, node N (inverter input)</td>
</tr>
<tr>
<td>11</td>
<td>VDDPA</td>
<td>Power</td>
<td>1.8V Regulator output for PA, TX:1.8V, RX:0V</td>
</tr>
<tr>
<td>12</td>
<td>RFP</td>
<td>RF port</td>
<td>RF output (PA) /input (LNA), port P.</td>
</tr>
<tr>
<td>13</td>
<td>RFN</td>
<td>RF port</td>
<td>RF output (PA) /Input (LNA), port N.</td>
</tr>
<tr>
<td>14</td>
<td>VSS</td>
<td>Ground</td>
<td>Ground (0 V)</td>
</tr>
<tr>
<td>15</td>
<td>VDD</td>
<td>Power</td>
<td>Power Supply (1.9 V to 3.6 V DC)</td>
</tr>
<tr>
<td>16</td>
<td>IREF</td>
<td>Analog Output</td>
<td>Reference current generation. A 22Kohm external resistor connected to ground.</td>
</tr>
<tr>
<td>17</td>
<td>VSS</td>
<td>Ground</td>
<td>Ground (0 V)</td>
</tr>
<tr>
<td>18</td>
<td>VDD</td>
<td>Power</td>
<td>Power Supply (1.9 V to 3.6 V DC)</td>
</tr>
<tr>
<td>19</td>
<td>CDVDD</td>
<td>Analog Output</td>
<td>Digital regulator output decoupling capacitor</td>
</tr>
<tr>
<td>20</td>
<td>VSS</td>
<td>Ground</td>
<td>Ground (0 V)</td>
</tr>
</tbody>
</table>

Table 1 BK2421 pin functions
4 State Control

4.1 State Control Diagram

- Pin signal: VDD, CE
- SPI register: PWR_UP, PRIM_RX, EN_AA, NO_ACK, ARC, ARD
- System information: Time out, ACK received, ARD elapsed, ARC_CNT, TX FIFO empty, ACK packet transmitted, Packet received

BK2421 has built-in state machines that control the state transition between different modes.

When auto acknowledge feature is disabled, state transition will be fully controlled by MCU.

![State Control Diagram](image)

Figure 3 PTX (PRIM_RX=0) state control diagram
4.2 Power Down Mode

In power down mode BK2421 is in sleep mode with minimal current consumption. SPI interface is still active in this mode, and all register values are available by SPI. Power down mode is entered by setting the PWR_UP bit in the CONFIG register to low.

4.3 Standby-I Mode

By setting the PWR_UP bit in the CONFIG register to 1 and de-asserting CE to 0, the device enters standby-I mode. Standby-I mode is used to minimize average current consumption while maintaining short start-up time. In this mode, part of the crystal oscillator is active. This is also the mode which the BK2421 returns to from TX or RX mode when CE is set low.

4.4 Standby-II Mode

In standby-II mode more clock buffers are active than in standby-I mode and much more current is used. Standby-II occurs when CE is held high on a PTX device with empty TX FIFO. If a new packet is uploaded to the TX FIFO in this mode, the device will automatically enter TX mode and the packet is transmitted.

4.5 TX Mode

- PTX device (PRIM_RX=0)

The TX mode is an active mode where the PTX device transmits a packet. To enter this mode from power down mode, the PTX device must have the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO, and a high pulse on the CE for more than 10μs.
The PTX device stays in TX mode until it finishes transmitting the current packet. If CE = 0 it returns to standby-I mode. If CE = 1, the next action is determined by the status of the TX FIFO. If the TX FIFO is not empty the PTX device remains in TX mode, transmitting the next packet. If the TX FIFO is empty the PTX device goes into standby-II mode.

If the auto retransmit is enabled (EN_AA=1) and auto acknowledge is required (NO_ACK=0), the PTX device will enter TX mode from standby-I mode when ARD elapsed and number of retried is less than ARC.

- **PRX device (PRIM_RX=1)**

The PRX device will enter TX mode from RX mode only when EN_AAA=1 and NO_ACK=0 in received packet to transmit acknowledge packet with pending payload in TX FIFO.

4.6 RX Mode

- **PRX device (PRIM_RX=1)**

The RX mode is an active mode where the BK2421 radio is configured to be a receiver. To enter this mode from standby-I mode, the PRX device must have the PWR_UP bit set high, PRIM_RX bit set high and the CE pin set high. Or PRX device can enter this mode from TX mode after transmitting an acknowledge packet when EN_AAA=1 and NO_ACK=0 in received packet.

In this mode the receiver demodulates the signals from the RF channel, constantly presenting the demodulated data to the packet processing engine. The packet processing engine continuously searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is presented in a vacant slot in the RX FIFO. If the RX FIFO is full, the received packet is discarded.

The PRX device remains in RX mode until the MCU configures it to standby-I mode or power down mode.

In RX mode a carrier detection (CD) signal is available. The CD is set to high when a RF signal is detected inside the receiving frequency channel. The internal CD signal is filtered before presented to CD register. The RF signal must be present for at least 128 µs before the CD is set high.

- **PTX device (PRIM_RX=0)**

The PTX device will enter RX mode from TX mode only when EN_AAA=1 and NO_ACK=0 to receive acknowledge packet.

5 Packet Processing

5.1 Packet Format

The packet format has a preamble, address, packet control, payload and CRC field.

<table>
<thead>
<tr>
<th>Preamble 1 byte</th>
<th>Address 3~5 byte</th>
<th>Packet Control 9/0 bit</th>
<th>Payload 0~32 byte</th>
<th>CRC 2/1 byte</th>
</tr>
</thead>
</table>

![Figure 5 Packet Format](image)
5.1.1 Preamble

The preamble is a bit sequence used to detect 0 and 1 levels in the receiver. The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to 01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver.

5.1.2 Address

This is the address for the receiver. An address ensures that the packet is detected by the target receiver. The address field can be configured to be 3, 4, or 5 bytes long by the AW register.

The PRX device can open up to six data pipes to support up to six PTX devices with unique addresses. All six PTX device addresses are searched simultaneously. In PRX side, the data pipes are enabled with the bits in the EN_RXADDR register. By default only data pipe 0 and 1 are enabled.

Each data pipe address is configured in the RX_ADDR_PX registers.

Each pipe can have up to 5 bytes configurable address. Data pipe 0 has a unique 5 byte address. Data pipes 1-5 share the 4 most significant address bytes. The LSB byte must be unique for all 6 pipes.

To ensure that the ACK packet from the PRX is transmitted to the correct PTX, the PRX takes the data pipe address where it received the packet and uses it as the TX address when transmitting the ACK packet.

On the PRX the RX_ADDR_Pn, defined as the pipe address, must be unique. On the PTX the TX_ADDR must be the same as the RX_ADDR_P0 on the PTX, and as the pipe address for the designated pipe on the PRX.

No other data pipe can receive data until a complete packet is received by a data pipe that has detected its address. When multiple PTX devices are transmitting to a PRX, the ARD can be used to skew the auto retransmission so that they only block each other once.

5.1.3 Packet Control

When Dynamic Payload Length function is enabled, the packet control field contains a 6 bit payload length field, a 2 bit PID (Packet Identity) field and, a 1 bit NO_ACK flag.

- **Payload length**
 The payload length field is only used if the Dynamic Payload Length function is enabled.

- **PID**
 The 2 bit PID field is used to detect whether the received packet is new or retransmitted. PID prevents the PRX device from presenting the same payload more than once to the MCU. The PID field is incremented at the TX side for each new packet received through the SPI. The PID and CRC fields are used by the PRX device to determine whether a packet is old or new. When several data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has the same PID as the previous packet, BK2421 compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded.

- **NO_ACK**
 The NO_ACK flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the receiver that the packet is not to be auto acknowledged.

The PTX can set the NO_ACK flag bit in the Packet Control Field with the command: W_TX_PAYLOAD_NOACK. However, the function must first be enabled in the FEATURE register by setting the EN_DYN_ACK bit. When you use this option,
the PTX goes directly to standby-I mode after transmitting the packet and the PRX does not transmit an ACK packet when it receives the packet.

5.1.4 Payload

The payload is the user defined content of the packet. It can be 0 to 32 bytes wide, and it is transmitted on-air as it is uploaded (unmodified) to the device.

The BK2421 provides two alternatives for handling payload lengths, static and dynamic payload length. The static payload length of each of six data pipes can be individually set.

The default alternative is static payload length. With static payload length all packets between a transmitter and a receiver have the same length. Static payload length is set by the RX_PW_Px registers. The payload length on the transmitter side is set by the number of bytes clocked into the TX_FIFO and must equal the value in the RX_PW_Px register on the receiver side. Each pipe has its own payload length.

Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to send packets with variable payload length to the receiver. This means for a system with different payload lengths it is not necessary to scale the packet length to the longest payload.

With DPL feature the BK2421 can decode the payload length of the received packet automatically instead of using the RX_PW_Px registers. The MCU can read the length of the received payload by using the command: R_RX_PL_WID.

In order to enable DPL the EN_DPL bit in the FEATURE register must be set. In RX mode the DYNPD register has to be set. A PTX that transmits to a PRX with DPL enabled must have the DPL_P0 bit in DYNPD set.

5.1.5 CRC

The CRC is the error detection mechanism in the packet. The number of bytes in the CRC is set by the CRCO bit in the CONFIG register. It may be either 1 or 2 bytes and is calculated over the address, Packet Control Field, and Payload.

The polynomial for 1 byte CRC is \(X^8 + X^2 + X + 1 \). Initial value is 0xFF.
The polynomial for 2 byte CRC is \(X^{16} + X^{12} + X^5 + 1 \). Initial value is 0xFFFF.

No packet is accepted by receiver side if the CRC fails.

5.2 Packet Handling

BK2421 uses burst mode for payload transmission and receive.

The transmitter fetches payload from TX FIFO, automatically assembles it into packet and transmits the packet in a very short burst period with 1Mbps or 2Mbps air data rate.

After transmission, if the PTX packet has the NO_ACK flag set, BK2421 sets TX_DS and gives an active low interrupt IRQ to MCU. If the PTX is ACK packet, the PTX needs receive ACK from the PRX and then asserts the TX_DS IRQ.

The receiver automatically validates and disassembles received packet, if there is a valid packet within the new payload, it will write the payload into RX FIFO, set RX_DR and give an active low interrupt IRQ to MCU.

When auto acknowledge is enabled (EN_AA=1), the PTX device will automatically wait for acknowledge packet after transmission, and re-transmit original packet with the delay of ARD until an acknowledge packet is received or the number of re-transmission exceeds a threshold ARC. If the later one happens, BK2421 will set MAX_RT and give an active low interrupt
Two packet loss counters (ARC_CNT and PLOS_CNT) are incremented each time a packet is lost. The ARC_CNT counts the number of retransmissions for the current transaction. The PLOS_CNT counts the total number of retransmissions since the last channel change. ARC_CNT is reset by initiating a new transaction. PLOS_CNT is reset by writing to the RF_CH register. It is possible to use the information in the OBSERVE_TX register to make an overall assessment of the channel quality.

The PTX device will retransmit if its RX FIFO is full but received ACK frame has payload.

As an alternative for PTX device to auto retransmit it is possible to manually set the BK2421 to retransmit a packet a number of times. This is done by the REUSE_TX_PL command.

When auto acknowledge is enabled, the PRX device will automatically check the NO_ACK field in received packet, and if NO_ACK=0, it will automatically send an acknowledge packet to PTX device. If EN_ACK_PAY is set, the acknowledge packet can also include pending payload in TX FIFO.

6 Data and Control Interface

6.1 TX/RX FIFO

The data FIFOs are used to store payload that is to be transmitted (TX FIFO) or payload that is received and ready to be clocked out (RX FIFO). The FIFO is accessible in both PTX mode and PRX mode.

There are three levels 32 bytes FIFO for both TX and RX, supporting both acknowledge mode or no acknowledge mode with up to six pipes.

- TX three levels, 32 byte FIFO
- RX three levels, 32 byte FIFO

Both FIFOs have a controller and are accessible through the SPI by using dedicated SPI commands. A TX FIFO in PRX can store payload for ACK packets to three different PTX devices. If the TX FIFO contains more than one payload to a pipe, payloads are handled using the first in first out principle. The TX FIFO in a PRX is blocked if all pending payloads are addressed to pipes where the link to the PTX is lost. In this case, the MCU can flush the TX FIFO by using the FLUSH_TX command.

The RX FIFO in PRX may contain payload from up to three different PTX devices.

A TX FIFO in PTX can have up to three payloads stored.

The TX FIFO can be written to by three commands, W_TX_PAYLOAD and W_TX_PAYLOAD_NO_ACK in PTX mode and W_ACK_PAYLOAD in PRX mode. All three commands give access to the TX_PLD register.

The RX FIFO can be read by the command R_RX_PAYLOAD in both PTX and PRX mode. This command gives access to the RX_PLD register.

The payload in TX FIFO in a PTX is NOT removed if the MAX_RT IRQ is asserted.

In the FIFO_STATUS register it is possible to read if the TX and RX FIFO are full or empty. The TX_REUSE bit is also available in the FIFO_STATUS register. TX_REUSE is set by the SPI command REUSE_TX_PL, and is reset by the SPI command: W_TX_PAYLOAD or FLUSH_TX.

6.2 Interrupt

In BK2421 there is an active low interrupt (IRQ) pin, which is activated when TX_DS IRQ, RX_DR IRQ or MAX_RT IRQ are set high by the state machine in the STATUS register. The IRQ pin resets when MCU writes '1' to the IRQ source bit in the STATUS register. The IRQ mask in the CONFIG
register is used to select the IRQ sources that are allowed to assert the IRQ pin. By setting one of the MASK bits high, the corresponding IRQ source is disabled. By default all IRQ sources are enabled.

The 3 bit pipe information in the STATUS register is updated during the IRQ pin high to low transition. If the STATUS register is read during an IRQ pin high to low transition, the pipe information is unreliable.

6.3 SPI Interface

6.3.1 SPI Command

The SPI commands are shown in Table 2. Every new command must be started by a high to low transition on CSN.

In parallel to the SPI command word applied on the MOSI pin, the STATUS register is shifted serially out on the MISO pin.

The serial shifting SPI commands is in the following format:

- <Command word; MSB bit to LSB bit (one byte)>
- <Data bytes; LSB byte to MSB byte, MSB bit in each byte first> for all registers at bank 0 and register 9 to register 14 at bank 1
- <Data bytes; MSB byte to LSB byte, MSB bit in each byte first> for register 0 to register 8 at bank 1

<table>
<thead>
<tr>
<th>Command name</th>
<th>Command word (binary)</th>
<th># Data bytes</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_REGISTER</td>
<td>000A AAAA</td>
<td>1 to 5 LSB byte first</td>
<td>Read command and status registers. AAAAA = 5 bit Register Map Address</td>
</tr>
<tr>
<td>W_REGISTER</td>
<td>001A AAAA</td>
<td>1 to 5 LSB byte first</td>
<td>Write command and status registers. AAAAA = 5 bit Register Map Address Executable in power down or standby modes only.</td>
</tr>
<tr>
<td>R_RX_PAYLOAD</td>
<td>0110 0001</td>
<td>1 to 32 LSB byte first</td>
<td>Read RX-payload: 1 – 32 bytes. A read operation always starts at byte 0. Payload is deleted from FIFO after it is read. Used in RX mode.</td>
</tr>
<tr>
<td>W_TX_PAYLOAD</td>
<td>1010 0000</td>
<td>1 to 32 LSB byte first</td>
<td>Write TX-payload: 1 – 32 bytes. A write operation always starts at byte 0 used in TX payload.</td>
</tr>
<tr>
<td>FLUSH_TX</td>
<td>1110 0001</td>
<td>0</td>
<td>Flush TX FIFO, used in TX mode</td>
</tr>
<tr>
<td>FLUSH_RX</td>
<td>1110 0010</td>
<td>0</td>
<td>Flush RX FIFO, used in RX mode Should not be executed during transmission of acknowledge, that is, acknowledge package will not be completed.</td>
</tr>
<tr>
<td>REUSE_TX_PL</td>
<td>1110 0011</td>
<td>0</td>
<td>Used for a PTX device Reuse last transmitted payload. Packets are repeatedly retransmitted as long as CE is high. TX payload reuse is active until W_TX_PAYLOAD or FLUSH TX is executed. TX payload reuse must not be activated or deactivated during package transmission</td>
</tr>
</tbody>
</table>
This write command followed by data 0x73 activates the following features:
• R_RX_PL_WID
• W_ACK_PAYLOAD
• W_TX_PAYLOAD_NOACK

A new ACTIVATE command with the same data deactivates them again. This is executable in power down or stand by modes only.

The R_RX_PL_WID, W_ACK_PAYLOAD, and W_TX_PAYLOAD_NOACK features registers are initially in a deactivated state; a write has no effect, a read only results in zeros on MISO. To activate these registers, use the ACTIVATE command followed by data 0x73. Then they can be accessed as any other register. Use the same command and data to deactivate the registers again.

This write command followed by data 0x53 toggles the register bank, and the current register bank number can be read out from REG7 [7]

<table>
<thead>
<tr>
<th>Command</th>
<th>Data (Hex)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATE</td>
<td>0101 0000</td>
<td>Read RX-payload width for the top R_RX_PAYLOAD in the RX FIFO.</td>
</tr>
<tr>
<td>R_RX_PL_WID</td>
<td>0110 0000</td>
<td>Used in RX mode. Write Payload to be transmitted together with ACK packet on PIPE PPP. (PPP valid in the range from 000 to 101). Maximum three ACK packet payloads can be pending. Payloads with same PPP are handled using first in - first out principle. Write payload: 1–32 bytes. A write operation always starts at byte 0.</td>
</tr>
<tr>
<td>W_ACK_PAYLOAD</td>
<td>1010 1PPP</td>
<td>Used in TX mode. Enables AUTOACK on this specific packet.</td>
</tr>
<tr>
<td>W_TX_PAYLOAD_NOACK</td>
<td>1011 0000</td>
<td>No Operation. Might be used to read the STATUS register</td>
</tr>
<tr>
<td>NOP</td>
<td>1111 1111</td>
<td>No Operation. Might be used to read the STATUS register</td>
</tr>
</tbody>
</table>

Table 2 SPI command

6.3.2 SPI Timing

![SPI timing diagram](image)

Figure 6 SPI timing
Cn: SPI command bit
Sn: STATUS register bit
Dn: Data Bit (LSB byte to MSB byte, MSB bit in each byte first)

Note: The SPI timing is for bank 0 and register 9 to 14 at bank 1. For register 0 to 8 at bank 1, the byte order is inversed that the MSB byte is R/W before LSB byte.

![SPI NOP timing diagram](image)

Figure 7 SPI NOP timing diagram

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tdc</td>
<td>Data to SCK Setup</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tdh</td>
<td>SCK to Data Hold</td>
<td>2</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tcsd</td>
<td>CSN to Data Valid</td>
<td></td>
<td>38</td>
<td>ns</td>
</tr>
<tr>
<td>Tcd</td>
<td>SCK to Data Valid</td>
<td></td>
<td>55</td>
<td>ns</td>
</tr>
<tr>
<td>Tcl</td>
<td>SCK Low Time</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tch</td>
<td>SCK High Time</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fsck</td>
<td>SCK Frequency</td>
<td>0</td>
<td>8</td>
<td>MHz</td>
</tr>
<tr>
<td>Tr,Tf</td>
<td>SCK Rise and Fall</td>
<td></td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>Tcc</td>
<td>CSN to SCK Setup</td>
<td>2</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tcch</td>
<td>SCK to CSN Hold</td>
<td>2</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tcwh</td>
<td>CSN Inactive time</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Tcdz</td>
<td>CSN to Output High Z</td>
<td>38</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 3 SPI timing parameter
Register Map

There are two register banks, which can be toggled by SPI command “ACTIVATE” followed with 0x53 byte, and bank status can be read from Bank0_REG7 [7].

7.1 Register Bank 0

<table>
<thead>
<tr>
<th>Address (Hex)</th>
<th>Mnemonic</th>
<th>Bit</th>
<th>Reset Value</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>CONFIG</td>
<td>7</td>
<td>0</td>
<td>R/W</td>
<td>Only '0' allowed</td>
</tr>
<tr>
<td></td>
<td>Reserved</td>
<td>6</td>
<td>0</td>
<td>R/W</td>
<td>Mask interrupt caused by RX_DR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>R/W</td>
<td>Mask interrupt caused by TX_DS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>R/W</td>
<td>Mask interrupt caused by MAX_RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>R/W</td>
<td>Enable CRC. Forced high if one of the bits in the EN_AA is high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>R/W</td>
<td>CRC encoding scheme '0' - 1 byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>R/W</td>
<td>Enable RX Addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>R/W</td>
<td>Enable data pipe 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>R/W</td>
<td>Enable data pipe 4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>R/W</td>
<td>Enable data pipe 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>R/W</td>
<td>Enable data pipe 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>R/W</td>
<td>Enable data pipe 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
<td>R/W</td>
<td>Enable data pipe 0.</td>
</tr>
<tr>
<td>03</td>
<td>SETUP_AW</td>
<td>Setup of Address Widths (common for all data pipes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved</td>
<td>7:2 000000 R/W Only '000000' allowed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AW</td>
<td>1:0 11 R/W RX/TX Address field width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>'00' - Illegal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>'01' - 3 bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>'10' - 4 bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>'11' - 5 bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LSB bytes are used if address width is below 5 bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>04</th>
<th>SETUP_RETR</th>
<th>Setup of Automatic Retransmission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARD</td>
<td>7:4 0000 R/W Auto Retransmission Delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'0000' – Wait 250 us</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'0001' – Wait 500 us</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'0010' – Wait 750 us</td>
</tr>
<tr>
<td></td>
<td></td>
<td>......</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'1111' – Wait 4000 us</td>
</tr>
<tr>
<td></td>
<td>ARC</td>
<td>3:0 0011 R/W Auto Retransmission Count</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'0000' – Re-Transmit disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'0001' – Up to 1 Re-Transmission on fail of AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>......</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'1111' – Up to 15 Re-Transmission on fail of AA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>05</th>
<th>RF_CH</th>
<th>RF Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reserved</td>
<td>7 0 R/W Only '0' allowed</td>
</tr>
<tr>
<td></td>
<td>RF_CH</td>
<td>6:0 0000010 R/W Sets the frequency channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>06</th>
<th>RF_SETUP</th>
<th>RF Setup Register</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reserved</td>
<td>7 0 R/W Reserved</td>
</tr>
<tr>
<td></td>
<td>6 0</td>
<td>R/W Reserved</td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>R/W Reserved</td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>RF_DR</td>
<td>3 1 R/W Air Data Rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'0' – 1Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'1' – 2Mbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>07</th>
<th>RF_PWR[1:0]</th>
<th>Set RF output power in TX mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2:1 11 R/W</td>
<td>RF_PWR[1:0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'00' – -10 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'01' – -5 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'10' – 0 dBm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'11' – 5 dBm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>08</th>
<th>LNA_HCURRE</th>
<th>Setup LNA gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 R/W</td>
<td>0:Low gain(20dB down)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1:High gain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>07</th>
<th>STATUS</th>
<th>Status Register (In parallel to the SPI command word applied on the MOSI pin, the STATUS register is shifted serially out on the MISO pin)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>07</th>
<th>RBANK</th>
<th>Register bank selection states. Switch register bank is done by SPI command “ACTIVATE” followed by 0x53</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 0 R</td>
<td>0: Register bank 0</td>
</tr>
<tr>
<td>Register</td>
<td>Address</td>
<td>Value</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>RX_DR</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>TX_DS</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>MAX_RT</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>RX_P_NO</td>
<td>3:1</td>
<td>111</td>
</tr>
<tr>
<td>TX_FULL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OBSERVE_TX</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>PLOS_CNT</td>
<td>7:4</td>
<td>0000</td>
</tr>
<tr>
<td>ARC_CNT</td>
<td>3:0</td>
<td>0000</td>
</tr>
<tr>
<td>CD</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RX_ADDR_P0</td>
<td>0A</td>
<td>39:0</td>
</tr>
<tr>
<td>RX_ADDR_P1</td>
<td>0B</td>
<td>39:0</td>
</tr>
<tr>
<td>RX_ADDR_P2</td>
<td>0C</td>
<td>7:0</td>
</tr>
<tr>
<td>RX_ADDR_P3</td>
<td>0D</td>
<td>7:0</td>
</tr>
<tr>
<td>RX_ADDR_P4</td>
<td>0E</td>
<td>7:0</td>
</tr>
<tr>
<td>RX_ADDR_P5</td>
<td>0F</td>
<td>7:0</td>
</tr>
<tr>
<td>TX_ADDR</td>
<td>10</td>
<td>39:0</td>
</tr>
<tr>
<td></td>
<td>RX_PW_P0</td>
<td>RX_PW_P1</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>7:6 00 R/W</td>
<td>7:6 00 R/W</td>
</tr>
<tr>
<td></td>
<td>RX_PW_P0 5:0 00000 R/W</td>
<td>RX_PW_P1 5:0 00000 R/W</td>
</tr>
<tr>
<td></td>
<td>Number of bytes in RX payload in data pipe 0 (1 to 32 bytes).</td>
<td>Number of bytes in RX payload in data pipe 1 (1 to 32 bytes).</td>
</tr>
<tr>
<td></td>
<td>0: not used</td>
<td>0: not used</td>
</tr>
<tr>
<td></td>
<td>1 = 1 byte</td>
<td>1 = 1 byte</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>32 = 32 bytes</td>
<td>32 = 32 bytes</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>7:6 00 R/W</td>
<td>7:6 00 R/W</td>
</tr>
<tr>
<td></td>
<td>RX_PW_P1 5:0 00000 R/W</td>
<td>RX_PW_P2 5:0 00000 R/W</td>
</tr>
<tr>
<td></td>
<td>Number of bytes in RX payload in data pipe 1 (1 to 32 bytes).</td>
<td>Number of bytes in RX payload in data pipe 2 (1 to 32 bytes).</td>
</tr>
<tr>
<td></td>
<td>0: not used</td>
<td>0: not used</td>
</tr>
<tr>
<td></td>
<td>1 = 1 byte</td>
<td>1 = 1 byte</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>32 = 32 bytes</td>
<td>32 = 32 bytes</td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>7:6 00 R/W</td>
<td>7:6 00 R/W</td>
</tr>
<tr>
<td></td>
<td>RX_PW_P2 5:0 00000 R/W</td>
<td>RX_PW_P3 5:0 00000 R/W</td>
</tr>
<tr>
<td></td>
<td>Number of bytes in RX payload in data pipe 2 (1 to 32 bytes).</td>
<td>Number of bytes in RX payload in data pipe 3 (1 to 32 bytes).</td>
</tr>
<tr>
<td></td>
<td>0: not used</td>
<td>0: not used</td>
</tr>
<tr>
<td></td>
<td>1 = 1 byte</td>
<td>1 = 1 byte</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>32 = 32 bytes</td>
<td>32 = 32 bytes</td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>7:6 00 R/W</td>
<td>7:6 00 R/W</td>
</tr>
<tr>
<td></td>
<td>RX_PW_P3 5:0 00000 R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of bytes in RX payload in data pipe 3 (1 to 32 bytes).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: not used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 1 byte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>…</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 = 32 bytes</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>7:6 00 R/W</td>
<td>7:6 00 R/W</td>
</tr>
<tr>
<td></td>
<td>RX_PW_P4 5:0 00000 R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of bytes in RX payload in data pipe 4 (1 to 32 bytes).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: not used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 1 byte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>…</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 = 32 bytes</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>7:6 00 R/W</td>
<td>7:6 00 R/W</td>
</tr>
<tr>
<td></td>
<td>RX_PW_P5 5:0 00000 R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of bytes in RX payload in data pipe 5 (1 to 32 bytes).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: not used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 1 byte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>…</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 = 32 bytes</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>7 0 R/W</td>
<td>7 0 R/W</td>
</tr>
<tr>
<td></td>
<td>TX_REUSE 6 0</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>Reuse last transmitted data packet if set high.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The packet is repeatedly retransmitted as long as CE is high. TX_REUSE is set by the SPI command REUSE_TX_PL, and is reset by the SPI command W_TX_PAYLOAD or FLUSH TX

<table>
<thead>
<tr>
<th>Register</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX_FULL</td>
<td>5:0</td>
<td>TX FIFO full flag: 1: TX FIFO full, 0: Available locations in TX FIFO</td>
</tr>
<tr>
<td>TX_EMPTY</td>
<td>4:1</td>
<td>TX FIFO empty flag: 1: TX FIFO empty, 0: Data in TX FIFO</td>
</tr>
<tr>
<td>Reserved</td>
<td>3:2</td>
<td>Only '00' allowed</td>
</tr>
<tr>
<td>RX_FULL</td>
<td>1:0</td>
<td>RX FIFO full flag: 1: RX FIFO full, 0: Available locations in RX FIFO</td>
</tr>
<tr>
<td>RX_EMPTY</td>
<td>0:1</td>
<td>RX FIFO empty flag: 1: RX FIFO empty, 0: Data in RX FIFO</td>
</tr>
<tr>
<td>ACK_PLD</td>
<td>255:0</td>
<td>Written by separate SPI command ACK packet payload to data pipe number PPP given in SPI command. Used in RX mode only. Maximum three ACK packet payloads can be pending. Payloads with same PPP are handled first in first out.</td>
</tr>
<tr>
<td>TX_PLD</td>
<td>255:0</td>
<td>Written by separate SPI command TX data pay-load register 1 - 32 bytes. This register is implemented as a FIFO with three levels. Used in TX mode only</td>
</tr>
<tr>
<td>RX_PLD</td>
<td>255:0</td>
<td>Read by separate SPI command RX data payload register. 1 - 32 bytes. This register is implemented as a FIFO with three levels. All RX channels share the same FIFO.</td>
</tr>
<tr>
<td>DYNPD</td>
<td>7:6</td>
<td>Enable dynamic payload length</td>
</tr>
<tr>
<td>DPL_P5</td>
<td>5:0</td>
<td>Enable dynamic payload length data pipe 5. (Requires EN_DPL and ENAA_P5)</td>
</tr>
<tr>
<td>DPL_P4</td>
<td>4:0</td>
<td>Enable dynamic payload length data pipe 4. (Requires EN_DPL and ENAA_P4)</td>
</tr>
<tr>
<td>DPL_P3</td>
<td>3:0</td>
<td>Enable dynamic payload length data pipe 3. (Requires EN_DPL and ENAA_P3)</td>
</tr>
<tr>
<td>DPL_P2</td>
<td>2:0</td>
<td>Enable dynamic payload length data pipe 2. (Requires EN_DPL and ENAA_P2)</td>
</tr>
<tr>
<td>DPL_P1</td>
<td>1:0</td>
<td>Enable dynamic payload length data pipe 1. (Requires EN_DPL and ENAA_P1)</td>
</tr>
<tr>
<td>DPL_P0</td>
<td>0:0</td>
<td>Enable dynamic payload length data pipe 0. (Requires EN_DPL and ENAA_P0)</td>
</tr>
<tr>
<td>FEATURE</td>
<td>7:3</td>
<td>Feature Register</td>
</tr>
<tr>
<td>EN_DPL</td>
<td>2:0</td>
<td>Enables Dynamic Payload Length</td>
</tr>
<tr>
<td>EN_ACK_PAY</td>
<td>1:0</td>
<td>Enables Payload with ACK</td>
</tr>
<tr>
<td>EN_DYN_ACK</td>
<td>0:0</td>
<td>Enables the W_TX_PAYLOAD_NOACK command</td>
</tr>
</tbody>
</table>

Note: Don’t write reserved registers and registers at other addresses in register bank 0

Table 4 Register Bank 0
7.2 Register Bank 1

<table>
<thead>
<tr>
<th>Address (Hex)</th>
<th>Mnemonic</th>
<th>Bit</th>
<th>Reset Value</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>31:0</td>
<td>0</td>
<td>W</td>
<td>Must write with 0x404B01E2</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>31:0</td>
<td>0</td>
<td>W</td>
<td>Must write with 0xC04B0000</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>31:0</td>
<td>0</td>
<td>W</td>
<td>Must write with 0xD0FC8C02</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>31:0</td>
<td>0x03001200</td>
<td>W</td>
<td>Must write with 0x999903941</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>31:0</td>
<td>0</td>
<td>W</td>
<td>RF output power in TX mode: 0:Low power (-30dB down), 1:High power</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>31:0</td>
<td>0</td>
<td>W</td>
<td>Must write with 0x24067FA6 (Disable RSSI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RSSI_TH</td>
<td>29:26</td>
<td>W</td>
<td>RSSI Threshold for CD detect 0: -97 dBm, 2 dB/step, 15: -67 dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RSSI_EN</td>
<td>18</td>
<td>0</td>
<td>RSSI measurement: 0:Enable, 1:Disable</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>31:0</td>
<td>0</td>
<td>W</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>31:0</td>
<td>0</td>
<td>W</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>31:0</td>
<td>0</td>
<td>R</td>
<td>Register bank selection states. Switch register bank is done by SPI command “ACTIVATE” followed by 0x53</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>0</td>
<td></td>
<td>R</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>0A</td>
<td>0</td>
<td></td>
<td>R</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>0B</td>
<td>0</td>
<td></td>
<td>R</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>0C</td>
<td>31:0</td>
<td>0</td>
<td>R</td>
<td>Please initialize with 0x00731200</td>
<td></td>
</tr>
<tr>
<td>0D</td>
<td>NEW_FEATURE</td>
<td>31:0</td>
<td>0</td>
<td>Please initialize with 0x0080B436</td>
<td></td>
</tr>
<tr>
<td>0E</td>
<td>RAMP</td>
<td>87:0</td>
<td>NA W</td>
<td>Ramp curve Please write with 0xFFFFF7EF208104082041</td>
<td></td>
</tr>
</tbody>
</table>

Note: Don’t write reserved registers and no definition registers in register bank 1

Table 5 Register Bank 1
8 Electrical Specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter (Condition)</th>
<th>Min</th>
<th>Typi</th>
<th>Max</th>
<th>Unit</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD</td>
<td>Voltage</td>
<td>1.9</td>
<td>3.0</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>-40</td>
<td>+27</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Digital input Pin</td>
<td>VIH</td>
<td>0.7VDD</td>
<td></td>
<td>5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIL</td>
<td>VSS</td>
<td></td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Digital output Pin</td>
<td>VOH</td>
<td>VDD-0.3</td>
<td></td>
<td>VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOL</td>
<td>0</td>
<td>0.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Power Down current</td>
<td>3</td>
<td>uA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Standby-I current</td>
<td>50</td>
<td>uA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Standby-II current</td>
<td>400</td>
<td>uA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal RF condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOP</td>
<td>Operating frequency</td>
<td>2400</td>
<td></td>
<td>2527</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>FXTAL</td>
<td>Crystal frequency</td>
<td>16</td>
<td></td>
<td>2</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>RFSK</td>
<td>Air data rate</td>
<td>1</td>
<td></td>
<td>2</td>
<td>Mbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmitter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF</td>
<td>Output power</td>
<td>-40</td>
<td>0</td>
<td>5</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>PBW</td>
<td>Modulation 20 dB bandwidth(2Mbps)</td>
<td>2.5</td>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBW</td>
<td>Modulation 20 dB bandwidth(1Mbps)</td>
<td>1.3</td>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF1</td>
<td>Out of band emission 2 MHz</td>
<td>-20</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRF2</td>
<td>Out of band emission 4 MHz</td>
<td>-40</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current at -40 dBm output power</td>
<td>11</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current at -30 dBm output power</td>
<td>11</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current at -25 dBm output power</td>
<td>12</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current at -10 dBm output power</td>
<td>13</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current at -5 dBm output power</td>
<td>15</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current at 0 dBm output power</td>
<td>17</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current at 5 dBm output power</td>
<td>23</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current (2Mbps)</td>
<td>18</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVDD</td>
<td>Current (1Mbps)</td>
<td>17</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Input</td>
<td>E-3 BER</td>
<td>10</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RXSENS</td>
<td>E-3 BER sensitivity (2Mbps)</td>
<td>-85</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RXSENS</td>
<td>E-3 BER sensitivity (1Mbps)</td>
<td>-88</td>
<td>dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/ICO</td>
<td>Co-channel C/1 (2Mbps)</td>
<td>4</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/1ST</td>
<td>ACS C/1 2MHz (2Mbps)</td>
<td>-5</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/12ND</td>
<td>ACS C/1 4MHz (2Mbps)</td>
<td>-20</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/13RD</td>
<td>ACS C/1 6MHz (2Mbps)</td>
<td>-25</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/ICO</td>
<td>Co-channel C/1 (1Mbps)</td>
<td>4</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/1ST</td>
<td>ACS C/1 1MHz (1Mbps)</td>
<td>4</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/12ND</td>
<td>ACS C/1 2MHz (1Mbps)</td>
<td>-18</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/13RD</td>
<td>ACS C/1 3MHz (1Mbps)</td>
<td>-19</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6 Electrical Specifications
9 Typical Application Schematic

Figure 8 BK2421 typical application schematic
10 Package Information

BK2421 uses the QFN20 4x4 package, with matt tin plating.

Table 1: Package Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.70</td>
<td>0.75</td>
<td>0.80</td>
<td>mm</td>
</tr>
<tr>
<td>A1</td>
<td>0.00</td>
<td>-</td>
<td>0.05</td>
<td>mm</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>0.20 REF</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>D</td>
<td>3.95</td>
<td>4.00</td>
<td>4.05</td>
<td>mm</td>
</tr>
<tr>
<td>E</td>
<td>3.95</td>
<td>4.00</td>
<td>4.05</td>
<td>mm</td>
</tr>
<tr>
<td>B</td>
<td>0.18</td>
<td>0.23</td>
<td>0.30</td>
<td>mm</td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
<td>mm</td>
</tr>
<tr>
<td>D2</td>
<td>2.55</td>
<td>2.70</td>
<td>2.80</td>
<td>mm</td>
</tr>
<tr>
<td>E2</td>
<td>2.55</td>
<td>2.70</td>
<td>2.80</td>
<td>mm</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.50 REF</td>
<td></td>
<td>mm</td>
</tr>
</tbody>
</table>

Package marking

<table>
<thead>
<tr>
<th>Q</th>
<th>Y</th>
<th>Y</th>
<th>W</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFN</td>
<td>Year number</td>
<td>Week number</td>
<td>Internal Code</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9 QFN4*4 20 Pin package diagram
11 Order Information

<table>
<thead>
<tr>
<th>Part number</th>
<th>Package</th>
<th>Packing</th>
<th>MPQ (ea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK2421QB</td>
<td>QFN</td>
<td>Tape Reel</td>
<td>3K</td>
</tr>
<tr>
<td>BK2421QC</td>
<td>QFN</td>
<td>Tray</td>
<td>3K</td>
</tr>
</tbody>
</table>

Table 7 BK2421 order information

Remark:
MPQ: Minimum Package Quantity
12 Contact Information

Beken Corporation Technical Support Center

Shanghai office
Suite 3A, 1278 Keyuan Road, Zhangjiang High-Tech Park,
Pudong New District, Shanghai, P.R. China
Phone: 86-21-51086811, 60871276
Fax: 86-21-60871277
Postal Code: 201203
Email: info@bekencorp.com
Website: www.bekencorp.com

Shenzhen office
Room C316, Shenzhen High-Tech Industrial Estate,
Nanshan, Shenzhen, P.R. China
Phone: 86-755-2655 1063
Postal Code: 518057